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ABSTRACT

Dislocations in crystals induce incompatibility between elastic strains. We show how this can
be related to the densities of crystal dislocations in individual slip systems and how the incom-
patibility causes nonlocal coupling with elastic strains in the evolving microstructure. The order
parameter and thus the corresponding stress fields develop long-range tails that correspond to the
superposition of elastic stress fields of individual dislocations. Hence, the stress field of any dis-
tribution of dislocations in an arbitrarily anisotropic medium can be calculated just by minimizing
the free energy. The corresponding continuous field of Peach-Koehler forces is then employed in
a Fokker-Planck equation for the dynamics of the dislocation density. This approach represents a
simple self-consistent scheme that yields the evolutions of both the order parameter field and the
continuous dislocation density.

1 Introduction

A mesoscopic description (nano to micrometer) of physical processes in solids, where atomic
length scales merge with those of the continuum, representsa crucial and perhaps most challenging
aspect of understanding material behavior. This arises, for example, during displacive (martensitic)
phase transformations where the distortions associated with the strains in unit cells and intra-
unit cell displacements (or shuffles) propagate over larger distances so that competing long-range
effects lead to the formation of inhomogeneities such as interfaces, spatially correlated domains
and complex microstructure. The currently available mesoscopic models for studies of defects
focus mainly on the self-organization of dislocations in spatially homogeneous microstructures.
The statistical models based on the Fokker-Planck equationhave been pioneered by Bakó and
Groma [1] and Zaiser [2]. A closer connection with the well-established Kröner’s continuum
theory of dislocations [3] was developed by El-Azab [4] and the formation of sharp dislocation
walls in isotropic media was observed by Limkumnerd and Sethna [5]. Phase field models of
dislocation patterning are usually based on the theory of Khachaturyan [6] where the dislocation
loops are viewed as coherent platelet inclusions.

Our objective in this paper is to incorporate dislocations into the Landau theory to study marten-
sitic phase transformations in materials containing defects. We consider an anisotropic medium
that is described by the elastic constants corresponding tothe high-temperature cubic phase. Uti-
lizing Kröner’s continuum theory of dislocations [3], we develop a self-consistent scheme that
allows simultaneous calculation of the microstructure andthe evolution of the dislocation density.



2 Free energy for materials with dislocations

In the following we will consider a square to rectangle phasetransformation, where the square
corresponds to the austenite phase stable aboveTc and the two variants of the rectangle to the
martensite that is stable belowTc. We identify three order parameterse1, e2 ande3 that correspond
to the three modes of in-plane deformation of the reference square lattice. In particular,e1 =

(ε11 + ε22)/
√

2 measures isotropic dilation,e2 = (ε11 − ε22)/
√

2 the change of shape ande3 = ε12

the change of right angles caused by the shear. For the squareto rectangle transformation,e2 is the
primary order parameter ande1, e3 are secondary order parameters.

The nonzero plastic strains induced by the dislocations cause discontinuities in the displace-
ment field and these are removed by elastic relaxation. The elastic components of the strain tensor
are then incompatible with each other and are constrained by∇×∇×ε = η, whereη is the so-called
incompatibility tensor. In the two-dimensional case, the only scalar equation that is not satisfied
identically reads∂22ε11−2∂12ε12+∂11ε22 = η33, where∂i j ≡ ∂2/∂xi∂x j. Writing the strains in terms
of the order parameter fields then yields the incompatibility constraint for the order parameters:

∇2e1 − (∂11− ∂22)e2 −
√

8∂12e3 = η33

√
2 . (1)

The Landau free energy for the martensitic phase transformations is typically constructed using
the harmonic term that follows from the elastic strain energy (terms withe2

1, e2
2, e2

3) augmented by
even higher-order terms ofe2 that are allowed by symmetry, and by a gradient term proportional to
|∇e2|2 which accounts for the energy cost for spatial variation of the order parameter [7]. Writing
(1) asG = 0 we include the incompatibility constraint using the Lagrange multiplierλ as
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The problem is to calculate the primary order parametere2 and the incompatibility fieldη33 (i.e. the
dislocation density) that minimize the free energy (2). Firstly, we look for the minimum ofF with
respect to the secondary order parameterse1, e3 and the Lagrange multiplierλ. The stationarity
conditionsδF/δe1 = δF/δe3 = δF/δλ = 0 yield e1 and e3 as functionals ofe2 and η33. By
substituting these back into (2) the free energy only depends one2 andη33.

In the Kröner’s continuum theory of dislocations [3], the incompatibility tensor is defined as
η = sym (∇×α), whereα is the Nye tensor with componentsαi j = B j/S i. Here,B is the so-called
net Burgers vector that is obtained as a vector sum of the Burgers vectors of all crystal dislocations
that comprise the mesoscopic cell perpendicular toxi with areaS i. In our two-dimensional case,

η33 = α32,1 − α31,2 (3)

and, therefore, only edge dislocations with their line directions parallel tox3 and the Burgers vector
components alongx1 andx2 contribute to this incompatibility. Although the incompatibility (3) is
completely determined by the distribution of the net Burgers vectorsB, a connection still needs to
be made betweenB and the density of crystal dislocations that populate individual slip systems.
Due to the mesoscopic nature of this model, we cannot invoke individual crystal dislocations but
will merely consider their densities in each slip system. This is accomplished by writing

α3i = Bi/S cell =

∑

s

(ns+ − ns−)bs
i , (4)



whereS cell is the area of one mesoscopic cell, the sum is over all the slipsystemss, andns+

and ns− are non-negative densities of crystal dislocations with the Burgers vectorsbs and−bs,
respectively. Substituting (4) into (3) yields the sought after connection between the densities of
crystal dislocations and the mesoscopic incompatibility field:

η33 = ǫi j

∑

s

∂(ns+ − ns−)
∂xi

bs
j , (5)

whereǫi j is the antisymmetric Levi-Civita tensor.
We can now proceed to construct a numerical scheme that will minimize the free energy (2)

subject to finite dislocation densitiesns+ and (or)ns−. We will assume that the time scale of
relaxation of the order parameter is much shorter than that of the dislocation density. The relaxation
of the order parameter field will then be accomplished by the relaxational dynamics

∂e2

∂t
= −Γ

δF
δe2

, (6)

whereΓ is the mobility coefficient, and during this relaxation we keep the dislocation density fixed.
From the relaxed order parameter field we can calculate the strain field and, using the Hooke’s
law, also the internal stress field. Hence, the components ofthe Peach-Koehler forces on the
dislocations in each mesoscopic cell can be calculated asF s±

k = ∓ǫ jkσ jlbs
l and the corresponding

glide component,Fs±
glide, by projecting the former into the individual slip systemss. In order to

conserve the total Burgers vector in the simulated domain, the dislocation densities are evolved
using the Fokker-Planck equations

∂ns±

∂t
= −D∇ · [Fs±

gliden
s±] . (7)

The individual dislocation densities are propagated through the time step∆t and the corresponding
new incompatibility field is obtained from (5). In the next step we utilize (6) to calculate the order
parameter fielde2 that minimizes the free energy subject to this new incompatibility field. This
recursive procedure represents a simple self-consistent scheme for a simultaneous calculation of
the microstructure and the dislocation density.

3 Simulations

We will now utilize the procedure outlined above to study theself-organization of dislocations in a
single crystal of Fe-30at.%Pd belowTc. The simulated domain consists of 128× 128 mesoscopic
unit cells, each containing 1000×1000 crystallographic unit cells with the lattice parameter 3.8 Å.
Hence, the width of the simulated domain is 48.64µm. In this material the crystal dislocations re-
sponsible for accommodating plastic strain are those with the Burgers vectors 1/2〈110〉, i.e. in our
two-dimensional case we consider two slip systems, with theBurgers vectors of the dislocations
±1/2[110] and±1/2[1̄10]. To each mesoscopic cell we initially assign a dislocation density that is
drawn at random from a uniform distribution; this yields thedensityρ = 2× 1014 m−2.

During the minimization the initially spatially uniform dislocation density (Fig. 1a) rapidly
develops alternating dislocation walls that decorate the twin boundaries between different variants
of the martensite (Fig. 1b). This is shown more clearly in thefield of the net Burgers vectors



(a) (b) (c) (d)

Figure 1: Initial (a) and final (b) density of dislocations, where dark regions correspond to low and
bright regions to high|B|, respectively. The final field of net Burgers vectorsB is shown in (c). The
final field e2 is shown in (d), where blue and red correspond to the two variants of the martensite
and the twin boundaries to the metastable austenitic phase.

in Fig. 1c. The microstructure (i.e. the order parameter field) corresponding to the dislocation
density in Fig. 1b,c exhibits well-defined twins corresponding to the two variants of the martensite
(Fig. 1d) separated by twin boundaries.

4 Conclusions

The Landau theory outlined in this paper represents the firststep in the formulation of a mesoscopic
theory for studying martensitic phase transformations mediated by defects. In the framework of
Kröner’s theory [3] utilized here, the dislocations induce incompatibility between the components
of the elastic strain tensor. The “strength” of this incompatibility is related to the densities of crystal
dislocations in individual discrete slip systems. The coupling between the order parameter field
and the dislocation density introduces competition and frustration in the evolving microstructure
and, therefore, the minimization of the free energy is accomplished simultaneously by the order
parameter field and the dislocation density. This results information of correlated dislocation walls
at the twin boundaries. The detailed explanation of this model can be found atarXiv:0806.4564.
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