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ABSTRACT

Dislocations in crystals induce incompatibility betweéaséc strains. We show how this can
be related to the densities of crystal dislocations in ihligl slip systems and how the incom-
patibility causes nonlocal coupling with elastic strainghe evolving microstructure. The order
parameter and thus the corresponding stress fields deweigpréange tails that correspond to the
superposition of elastic stress fields of individual dislit@ns. Hence, the stress field of any dis-
tribution of dislocations in an arbitrarily anisotropic ciem can be calculated just by minimizing
the free energy. The corresponding continuous field of R&aeinler forces is then employed in
a Fokker-Planck equation for the dynamics of the dislocatiensity. This approach represents a
simple self-consistent scheme that yields the evolutidrimth the order parameter field and the
continuous dislocation density.

1 Introduction

A mesoscopic description (nano to micrometer) of physicaktesses in solids, where atomic
length scales merge with those of the continuum, represesrtgcial and perhaps most challenging
aspect of understanding material behavior. This arisegx@ample, during displacive (martensitic)
phase transformations where the distortions associatddtthe strains in unit cells and intra-
unit cell displacements (or skiles) propagate over larger distances so that competingriomge
effects lead to the formation of inhomogeneities such as ated, spatially correlated domains
and complex microstructure. The currently available mespis models for studies of defects
focus mainly on the self-organization of dislocations imtsgly homogeneous microstructures.
The statistical models based on the Fokker-Planck equatiwe been pioneered by Bak6é and
Groma [1] and Zaiser [2]. A closer connection with the wedtablished Kroner's continuum
theory of dislocations [3] was developed by El-Azab [4] ahd formation of sharp dislocation
walls in isotropic media was observed by Limkumnerd and i&2{5]. Phase field models of
dislocation patterning are usually based on the theory @dkhturyan [6] where the dislocation
loops are viewed as coherent platelet inclusions.

Our objective in this paper is to incorporate dislocatiarie the Landau theory to study marten-
sitic phase transformations in materials containing dsefeé/e consider an anisotropic medium
that is described by the elastic constants corresponditigetbigh-temperature cubic phase. Uti-
lizing Kroner's continuum theory of dislocations [3], wewklop a self-consistent scheme that
allows simultaneous calculation of the microstructure gnedevolution of the dislocation density.



2 Free energy for materials with dislocations

In the following we will consider a square to rectangle phaaasformation, where the square
corresponds to the austenite phase stable abgwnd the two variants of the rectangle to the
martensite that is stable belol. We identify three order parametess e, ande; that correspond
to the three modes of in-plane deformation of the referegare lattice. In particulag;, =
(e11 + £22)/ V2 measures isotropic dilatior, = (11 — £25)/ V2 the change of shape apgl= &1,
the change of right angles caused by the shear. For the siguaaangle transformatioms; is the
primary order parameter amg, e; are secondary order parameters.

The nonzero plastic strains induced by the dislocationseaiscontinuities in the displace-
ment field and these are removed by elastic relaxation. dstielcomponents of the strain tensor
are then incompatible with each other and are constrain&dx e = 5, wheren is the so-called
incompatibility tensor. In the two-dimensional case, tidyascalar equation that is not satisfied
identically read$);,e11 — 2012812+ 011822 = 133, Whered;; = 82/8x56x,-. Writing the strains in terms
of the order parameter fields then yields the incompatybaid@nstraint for the order parameters:

V2, — (011 — D20)er — V8A1083 = 3z V2 . (1)

The Landau free energy for the martensitic phase transtarnsais typically constructed using
the harmonic term that follows from the elastic strain epdtgrms withez, e, €2) augmented by
even higher-order terms ef that are allowed by symmetry, and by a gradient term progaatito
|Vey|? which accounts for the energy cost for spatial variatiorheférder parameter [7]. Writing
(1) asG = 0 we include the incompatibility constraint using the Lagge multiplierd as
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The problem is to calculate the primary order parametand the incompatibility fielg; (i.e. the
dislocation density) that minimize the free energy (2) sty we look for the minimum oF with
respect to the secondary order parametgrg; and the Lagrange multipliet. The stationarity
conditionséF/é6e; = 6F/6e3 = 6F/64 = 0 yield e ande; as functionals o, andnz;. By
substituting these back into (2) the free energy only depemnd, andrss.

In the Kroner’'s continuum theory of dislocations [3], tiieompatibility tensor is defined as
n =sym (V x ), where is the Nye tensor with components = B;/S;. Here,B is the so-called
net Burgers vector that is obtained as a vector sum of theeBsikgectors of all crystal dislocations
that comprise the mesoscopic cell perpendiculag teith areaS;. In our two-dimensional case,

N33 = (321 — @312 (3)

and, therefore, only edge dislocations with their line cliens parallel tocz and the Burgers vector
components along; andx, contribute to this incompatibility. Although the incomgality (3) is
completely determined by the distribution of the net BusgerctorsB, a connection still needs to
be made betweeB and the density of crystal dislocations that populate iidial slip systems.
Due to the mesoscopic nature of this model, we cannot invati@idual crystal dislocations but
will merely consider their densities in each slip systemisi©iaccomplished by writing

a5 = B/Sea = ) (" —n)bF @)



where Sy is the area of one mesoscopic cell, the sum is over all thesgipemss, andn®
andn® are non-negative densities of crystal dislocations with Burgers vector®® and —b*,
respectively. Substituting (4) into (3) yields the sougitéraconnection between the densities of
crystal dislocations and the mesoscopic incompatibiléigfi

a(n% —n*>
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wheresg; is the antisymmetric Levi-Civita tensor.

We can now proceed to construct a numerical scheme that wilhmze the free energy (2)
subject to finite dislocation densitie§* and (or)n*. We will assume that the time scale of
relaxation of the order parameter is much shorter than tiaealislocation density. The relaxation
of the order parameter field will then be accomplished by étexational dynamics
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wherel is the mobility codficient, and during this relaxation we keep the dislocatiarsig fixed.
From the relaxed order parameter field we can calculate thendteld and, using the Hooke’s
law, also the internal stress field. Hence, the componenteePeach-Koehler forces on the
dislocations in each mesoscopic cell can be calculatdefas- Fejo b’ and the corresponding
glide component Slider by projecting the former into the individual slip systemisin order to
conserve the total Burgers vector in the simulated dombm dislocation densities are evolved
using the Fokker-Planck equations
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The individual dislocation densities are propagated tghahe time stept and the corresponding
new incompatibility field is obtained from (5). In the nex¢twe utilize (6) to calculate the order
parameter fielde, that minimizes the free energy subject to this new inconbgdayi field. This
recursive procedure represents a simple self-consistben®e for a simultaneous calculation of
the microstructure and the dislocation density.
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3 Simulations

We will now utilize the procedure outlined above to studydk#-organization of dislocations in a
single crystal of Fe-30at.%Pd beldw. The simulated domain consists of 12828 mesoscopic
unit cells, each containing 10601000 crystallographic unit cells with the lattice paramé&t8 A.
Hence, the width of the simulated domain is@®8um. In this material the crystal dislocations re-
sponsible for accommodating plastic strain are those \WwtBurgers vectors/2(110), i.e. in our
two-dimensional case we consider two slip systems, witrBingers vectors of the dislocations
+1/2[110] and+1/2[110]. To each mesoscopic cell we initially assign a dislocedensity that is
drawn at random from a uniform distribution; this yields thensityp = 2 x 10 m=2.

During the minimization the initially spatially uniform slocation density (Fig. 1a) rapidly
develops alternating dislocation walls that decorate\the boundaries betweenftirent variants
of the martensite (Fig. 1b). This is shown more clearly in file& of the net Burgers vectors



Figure 1: Initial (a) and final (b) density of dislocationgyeve dark regions correspond to low and
bright regions to highB|, respectively. The final field of net Burgers vectBris shown in (c). The
final field & is shown in (d), where blue and red correspond to the two neviaf the martensite
and the twin boundaries to the metastable austenitic phase.
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in Fig. 1c. The microstructure (i.e. the order parametedYiebrresponding to the dislocation
density in Fig. 1b,c exhibits well-defined twins correspiogdo the two variants of the martensite
(Fig. 1d) separated by twin boundaries.

4 Conclusions

The Landau theory outlined in this paper represents thesteptin the formulation of a mesoscopic
theory for studying martensitic phase transformationsiated by defects. In the framework of

Kroner’s theory [3] utilized here, the dislocations induncompatibility between the components
of the elastic strain tensor. The “strength” of this inconiphty is related to the densities of crystal

dislocations in individual discrete slip systems. The dmgpbetween the order parameter field
and the dislocation density introduces competition andtfation in the evolving microstructure

and, therefore, the minimization of the free energy is aqd®hed simultaneously by the order
parameter field and the dislocation density. This resultgrimation of correlated dislocation walls

at the twin boundaries. The detailed explanation of this@hodn be found airXiv:0806.4564.
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